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Percolation on a Bethe lattice with multi-neighbour 
bonds-exact results 

Z Q Zhang, T C Li and F C Pu 
Institute of Physics, Chinese Academy of Sciences, Beijing, China 

Received 20 October 1982 

Abstract. Percolation problems on a Bethe lattice with Lth-nearest-neighbour bonds are 
treated exactly by a generalised recursive method. For the site percolation, both the cases 
without and with interbranch bonds are considered. Formal expressions for the critical 
percolation pc, percolation probability P ( p )  (near p,) and the mean cluster size S ( p )  
( p  < p,) are obtained for any K (K + 1 = degree of the Bethe lattice) and L.  For the bond 
percolation, only the case of K = 2 and L = 2 is considered. The method described here 
can be extended to other more complicated branching media including decorated Bethe 
lattices. 

1. Introduction 

The percolation problem (for reviews see Stauffer 1979, Essam 1980) has attracted 
much attention in recent years because of its close relationship with the thermal critical 
phenomena (Kasteleyn and Fortuin 1969). Up to now, there are only a few cases 
where exact results have been found. Percolation on a Bethe lattice is the-simplest 
branching medium which can be solved exactly. Fisher and Essam (1961) were the 
first to solve random percolation problems on Bethe or decorated Bethe lattices. 
Recently, more complicated percolation problems on a Bethe lattice with lattice 
anisotropy or correlations have been proposed and solved (Turban 1979a, b, Turban 
and Guilmin 1979, Chalupa et a1 1979). However, all those systems studied are 
restricted to nearest-neighbour bonds only. For percolation systems with bonds 
connecting Lth nearest neighbours, only the one-dimensional case has been solved 
and non-universal critical behaviour is found (Klein et a1 1978, Zhang and Shen 1982, 
Zhang et a1 1983, Li et a1 1983). 

In this work the recursive method which is widely used in the Bethe lattice is 
extended to treat the case of bonds connecting Lth nearest neighbours. For the site 
percolation, we consider in 90 2 and 3 respectively the cases without and with inter- 
branch bonds. Bethe lattices without and with interbranch bonds are shown in figures 
l ( a )  and ( 6 )  respectively for the case K = 2 and L = 2, where K + 1 is the degree of 
a Bethe lattice. A Bethe lattice without interbranch bonds is rather unusual. From 
figure l ( a )  one can see that the first and second generations are different from the 
rest. For any finite L, we will have the first L generations which are different from 
the rest and also differ among themselves. Strictly speaking, a Bethe lattice without 
interbranch bonds is not a regular pseudo-lattice. The reasons why we study such a 
case are two-fold. Firstly, it is the simplest case to consider for the general value of 
K and L. It also makes the generalised recursive method easy to present. Secondly, 
as we will see in 0 2, the critical behaviour (e.g. percolation threshold and critical 
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( 0 1  I b )  

Figure 1. A Bethe lattice with K = 2 and L = 2. ( a )  No interbranch bonds; ( b )  with 
interbranch bonds. 

exponents) which is determined by the recursion relations depends not on the first 
L generations but on the rest of the lattice. By studying both cases without and 
with interbranch bonds, one can see the effects of interbranch bonds on the critical 
behaviour, particularly the critical percolations. A Bethe lattice without interbranch 
bonds has been used recently in studying the modulated phase of an Ising system with 
competing nearest-neighbour and next-nearest-neighbour interactions (Vannimenus 
1981). Section 4 is devoted to the bond percolation problem with interbranch bonds. 
Here, only the case with K = 2 and L = 2 is considered. It is straightforward to apply 
the same method to the case of bond percolation on a Bethe lattice without interbranch 
bonds. Since this is not a regular Bethe lattice and is of less interest, we will not 
consider this case here. Finally a summary is given in § 5 .  

2. Site percolation without interbranch bonds 

In this section we consider the simplest case of site percolation on a Bethe lattice 
without interbranch bonds. Considering the case of K = 2 and L = 2 (figure l(a)), we 
define Qo (figure 2) as the probability that the number of occupied sites in a single 
branch emerging from sites 1 and 2 is finite when site 2 is occupied. Similarly, Q1 is 
defined as the probability that the number of occupied sites in a single branch emerging 
from sites 1 and 2 is finite when site 1 is occupied and site 2 is empty. Since L = 2, 
the configurations of a chain of two sites 1-2 have to be considered to determine the 
connectivity property of the branch emerging from this chain. In the site percolation, 
if a site on the chain is occupied, then all the other sites preceding that site become 
irrelevant. For L = 2, there are only two independent variables, Qo and Q1. It is easy 

Figure 2. Illustrations of the definitions of Q o  and QI for L = 2. 0 denotes occupied site 
and 0 denotes empty site. 
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to obtain the recursion relations 

Qo = (qQi +pQo)’ 01 = (4  + P Q o ) ~  (2.1) 

where p is the site occupation probability and q = 1 - p .  The above recursive method 
is easily generalised to the case of any L and K. In this case, there are L independent 
variables. We define Qi ( i  = 0 , 1 , .  . . , L - 1 )  as the probability that the number of 
occupied sites emerging from a single branch 1-2-3-. . . -L is finite when the (L-i)th 
site is occupied while the sites from L-i + 1 to L are empty. The recursion relations 
then become 

Qi = (qQi.1 + P Q o ) ~  i = O , 1 ,  . . . :  L - 1  
with 

Q r = l .  (2.2) 

Now consider an occupied site. This belongs to a finite cluster with probability 
( 1  - P( p ) ) ,  when K + 1 branches emerging from it are finite. So we have 

1 - P ( p )  = (401  + ~ Q o ) ~ + ~  (2.3) 

where P ( p )  is usually called the percolation probability. Equation (2.2) always has a 
trivial solution Q, = 1 for all i from 0 to L - 1. As we increase p from 0 up to a critical 
point p c ,  a second non-trivial solution appears and Q, starts to decrease from 1. This 
indicates the existence of an infinite cluster. Let A ( = p  - p c =  q c - q )  be a small para- 
meter. Both sides of (2.2) can be expanded in terms of A .  To first order in A ,  we find 

L-1 

1 =o 
A,,Q:(A = O ) = O  i = 0, 1, . . . , L - 1 

with 
QL(0) = 0 

At, = K(qcSi ‘1.1 +PcSO,J)  - 81, 12.4) 
where Q: (A  = 0) is the derivative of Q, with respect to p evaluated at pc (A = 0). The 
critical point pc is determined by the condition for the existence of a non-trivial solution 
of Q: (0). From (2.4) the condition det(A,,) = 0 gives 

Kp,[l+Kqc+(Kqc)2+ . . . +(Kqc)L-l]=l  (2.5) 
which determines pc for any K and L. It can be proved rigorously that (2.5) gives 
one, and only one, real root qc in the range (0, 1)  and qc(K, L )  approaches one as K 
or L is increased. 

The percolation probability P ( p )  near pc can be found by expanding (2.3) to first 
order in A. After simple manipulations, we find 

where Qb (0) can be obtained analytically and is expressed as (see the appendix) 

(2.7) 
-2K2(x - l ) [ X L + l  - L(K - 1)1 

Q ~ ( 0 ) = x ~ + ~ ( X - 1 ) ~ - ( K - 1 ) ~ X [ x ~ - ( 2 L + l ) x + 2 ( L K - 1 ) 1  

where x =Kqc. Away from pc, P ( p )  has to be determined numerically by solving 
(2.2). We have solved (2.2) numerically for the cases of K = 2-4 and L = 2-5. The 
values for pc(K, L )  are shown in figure 3 (full lines). The percolation probability 
P ( p )  for some.values of K and L is shown in figure 4 (full curves). 
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L 

Figure 3. p c  for various values of K and L .  The full lines denote no interbranch bonds 
and broken lines denote interbranch bonds. 

In order to find the mean cluster size S ( p ) ,  we use the ‘ghost site’ method (Turban 
1979a, b). Here we give a brief review of the method. Let P , ( p )  be the probability 
that a given site belongs to a finite cluster of s sites. From the definitions of P ( p )  
and P, ( p ) ,  we have the following sum rule 

(2.8) 

where the prime on the sum indicates the exclusion of the infinite cluster. The mean 

P 

Figure4. Percolation probability P ( p )  for various values of K and L which are denoted 
by ( K ,  Lj .  The full curves denote no interbranch bonds and the broken curves denote 
interbranch bonds. The values of (K ,  Lj for the curves are as follows: A, (2,  2) ;  B, ( 2 , 3 ) ;  
C, ( 2 , 4 ) ;  D, ( 3 , 2 i ;  E, ( 3 , 3 ) ;  F, ( 4 , 2 ) ;  G ,  ( 4 , 3 ) ;  H, ( 2 , 3 ) .  
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cluster size S ( p )  is defined as 

In the presence of the ‘ghost site’, the probability that a site belongs to a finite cluster 
of size s becomes 

P s ( p ,  h )  =PS(p) ( l  -h)’ (2.10) 

where h is the ‘ghost field’ which connects the ‘ghost site’ to every occupied site. The 
percolation probability P ( p )  is also h dependent and (2.8) becomes 

(2.11) 

From (2.8)-(2,11), it is easy to see that S ( p )  is given by 

s ( p ) = ( a p ( p ,  h)/ah)lh=o/(1-P(P)). (2.12) 

We now come back to the Bethe lattice. In the presence of the ‘ghost site’, (2.2) 
and (2.3) become respectively 

Q , ( p ,  h)=[qQt+i(p,  h)+p(l-h)Qo(p,  h) lK i = o ,  1 , .  . . , L - 1  

with 

Q L (  P, h 1 1 (2.13) 

and 

(1 - P ( P ,  h 1) = (1 - h ) E ~ ? I ( P ,  h 1 + p ( l -  h ) Q o ( p ,  h ) IKc1.  (2.14) 

Since the occupied site chosen in defining (1 -P(p)) of (2.13) has to be disconnected 
from the ‘ghost site’, this gives a factor (1 - h )  in front of the bracket on the right-hand 
side of (2.14). Taking the partial derivatives with respect to h on both sides of (2.14) 
and evaluating at h = 0, we find using (2.12) 

where (2.2) and (2.3) have been used to derive (2.15). Differentiating both sides of 
(2.13) with respect to h and evaluating at h =0 ,  we find a set of inhomogeneous 
equations 

i = 0, 1, . . . , L - 1 (2.16) 

with 
(aQL/ah ) h  = o  = 0 

where (2.2) has been used to derive (2.16). Using (2.16) when i =0 ,  (2.15) can be 
rewritten as 

(2.17) 

For p > p c ,  we have to solve (2.16) numerically for (aQo/ah)h=a  in  order to find S ( p ) .  
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However, when p < p c  we have Q i ( p ) =  1 for all i and P(p)=O.  Equation (2.16) is 
then simplified to 

L - 1  

1 Aij(aQj/ah)h=o =Kp i = 0, 1, . . . , L - 1 (2.18) 
j = O  

with 

(aQL/ah)h =o 0 

where Aij is given by (2.4). (2.18) is easy to solve for (aQo/ah)h=O.  We obtain finally 
the following formal expression of S ( p )  for any K and L :  

l + p [ l + K q + ( K q y +  . . .  +(Kqf-'] 
s (p )=1-Kp[1+Kq+(Kq)2+ .  . . p < p c .  (2.19) 

S ( p )  diverges when the denominator of (2.19) becomes zero. This gives exactly (2.5) 
for determining the critical point. In one dimension, putting K = 1, (2.19) becomes 

S ( P )  = (2-qL)/qL. (2.20) 

This is exactly the result obtained by the generating function method (Klein et a1 
1978). It is easy to see that (2.6), (2.7) and (2.19) give the critical exponents p = 1 
and y = 1 for all K > 1 and L. The universality is expected to hold for dimensionality 
greater than one if higher-neighbour bonds are taken into account. This has been 
demonstrated by Monte Carlo simulations on common lattices (Hoshen et a1 1978, 
1979). 

3. Site percolation with interbranch bonds 

If interbranch bonds are considered, recursion relations (2.2) have to be modified 
when L 3 3. For instance, when L = 4, the recursion relations are 

Q o =  ( 4 0 1  + P Q o ) ~  (3.1) 

01 = ( 4 0 2  + pQoY (3.2) 

QZ = (qQdK + ( : ) ( q Q 2 ) K - ' @ Q ~ )  + ( ~ ) ( q Q ~ ) ~ - ~ ( p Q o ) ~  

+ , . . + ( + ( p ~ ~ ) ~  K - 1  

= q K ( l - Q ? ) + Q i .  (3.4) 
Figure 5 shows Qi ( i  = 0, 1 , 2 , 3 )  for the case of K = 3. Considering 02, if none of 
the sites 5 ,  6 and 7 emerging from the branch 1-2-3-4 are occupied, the probability 
for this branch to be a finite cluster is (qQ3)K. However, if one of the sites 5 ,  6, 7 
(say site 5 )  is occupied, then the probability for the sub-branch 1-2-3-4-5 to be a 
finite cluster is pQo, while for the other two sub-branches the probability is (qQ2)'. 
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Figure 5. lllustrations of the definition of Qi, i = 0-3, for K = 3 and L = 4 (with interbranch 
bonds). Only the nearest-neighbour bonds are drawn. All the other bonds from L = 2-4 
which are not shown here do exist. 

This is because site 5 is closer to the other two sub-branches than site 2. In the case 
of site percolation, site 2 becomes irrelevant. Since there are three ways to occupy 
a single site among sites 5, 6 and 7,  we get a term (?) ( q Q 2 ) 3 - ' ( p Q ~ ) ,  which is the 
second term of (3.3). Similarly other terms in (3.3) can be generated. For any L, the 
recursion relations are 

Qi = (qQi +I + pQoIK i=O, 1 
(3.5) 

Qi = q K ( Q E 1  - Q ~ ) + Q I  i = 2 , 3 , .  . . , L -  1 

with 

QLs1. 

Using the same method as described in 9: 2, we expand Qi in the vicinity of p c ,  with 
A = p  - p c  as a small parameter, to first order in A ; equations (3.5) give 

L-1 

BilQi ( A  = 0) = 0 i = 0,  1, . . , , L - 1 
j = O  

(3.6) 

with 

QL(0) = 0 

where 
i = O , 1  
i = 2 , 3 , .  . . , L -  1 (3.7) 

XStt1.l +(K -x)S0,1 -a,,, 
B,, = 

with x = K4 and y = KqK. The critical point p c  is determined by the condition for the 
existence of a non-trivial solution of (3.6). From det(B,,)=O, we find, with some 
manipulation, the equation for qc as 

[X,2+(1-K)x,]y,L-2+(1-K)(l+y,+yf+ . . .  +y:-*)=O (3.8) 
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where xc = Kq,, yc  = K q f .  It can also be proved that (3.8) has a unique real root in 
(0, l ) ,  and q, increases to one as K or L is increased. Equation (3.8) is solved 
numerically for K = 2,3 and L = 3,4. The values of pc are shown in figure 3 (broken 
lines). As was expected, the existence of interbranch bonds gives lower values of 
pc for all K > 1 and L 3 3. The percolation probability is again given by (2.3). Equation 
(3.5) is solved numerically for the case L = 3 and K = 2. P ( p )  is plotted in figure 4 
(broken curve) for comparison. Near pc the analytic expression of P ( p )  for any K 
and L can be obtained. 

Z Q Zhang, T C Li and F C Pu 

To second order in A (3.5) gives 
L-1 

j=O 
BijQY (0) = Ci i = 0, 1, . . . , L - 1 

where 

(3.9) 

i=O, 1 
(3.10) [ (1 - K )/Kl(Q I (0)l2 + 2K (0 :+I (0) - Qb (0)) 

2K2(y/x)(QI+i(0)-QI(0))-(K- l)~[(Q:+i(0))~-(Q;(0))*1 
i = 2 , 3 , ,  . . ,L-1 .  

Bii of (3.9) is given by (3.7). The solvability condition of (3.9) determines C?:(O). 
After some lengthy but straightforward manipulations, parallel to the one shown in 
the appendix, we find 

Qb (0) = 2K2x [X ( 2 ~  - K + 1 )y L-2 + Kye (K,  L)] 

X ( X ~ ~ ~ - ~ [ ( ~ K - - ~ ) X ~ - ~ ( K - ~ ) ~ X  +(K-l)3]  

+#(K-l)y{2[x2+(1-K)x +l-K]B(K,L)-C(K, L ) } P  (3.11) 

B(K,  L)=[(K-l) /y(y -1)2][yL-1-(L-1)y +L-21 (3.12) 
where 

and 

C('K,L)= ( y  -1)-'[X2+(1-K)x +1-K]2yL-3(yL-2-1) 

+ ( y  - 1)-2{2(1 -K)[x2 + (1 -K)x + 1 

+(1  -K)2(y - 1 ) - 3 [ y 2 L - 5 + ( 5 - 2 L ) y L - 2 - ( 5 - 2 2 L ) y L - 3 -  11. 

- (L - 2)y  +L -31) 

(3.13) 
The formal expression for the percolation probability P ( p )  near pc is obtained by 
substituting (3.11), (3.12) and (3.13) into (2.6). 

In order to find the mean cluster size S ( p ) ,  we again use the 'ghost site' method. 
In the presence of the 'ghost site' the recursion relations (3.5) become 

i=O,1  
(3.14) 

The percolation probability and the mean cluster size S ( p )  are still given by (2.14) 
and (2.15) respectively. Taking the partial derivatives with respect to h on both sides 
of (3.14), we find 

[qQi+l(P, h 1 + ~ ( l -  h )Qo(P, h )IK 
4 K ( Q ~ i ( P , h ) - Q f ( p , h ) ) + Q 1 ( p , h )  i = 2 , 3 , .  . . , L - l .  Qi(P, h ) = [  

KQi(P)[q(aQi+l/ah ) h = O  +P(aQolah ) h  =o-PQo(P)I 
qQ#+l(P) +PQo(P)  

= o, 

Kq"[QE;' ( P ) ( a Q i + l / a h  ) h = ~ - Q f - '  (p)(aQ2/ah ) h = 0 I  + ( a Q l / a h ) h = ~  
(2) h = o  = 1 

i = 2 , 3  , . . . ,  L-1 (3.15) 
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with 

(aQL/ah)h=o= 0. 

Since the expressions for (aQi /ah)h=o are the same as (2.16) for i = 0 and 1, (2.17) is 
still a valid expression for the mean cluster size S ( p ) .  Here, (aQo/ah)h=o is determined 
by (3.15), whereas Qi and P ( p )  are determined by (3.5) and (2.3). For p > p c  the 
above quantities have to be solved numerically. For p < p c  we have Qi = 1, P ( p )  = 0 
and (3.15) can be written as 

L-1 i = O ,  1 
j = l  i = 2 , 3 , .  . . , L-1  

(3.16) 

where Bij is given by (3.7). Equation (3.16) is simple enough to solve for (aQo/ah)h=O. 
Using (2.17), we find finally the following expression of S ( p )  for any L and K:  

(1 + p  +px)yL+ + (1 + p  -x ) ( l  + y + y 2  + . . . + y L - 3 )  
S ( p ) = [ x 2 + ( 1 - K ) X ] y L - 2 + ( 1 - K ) [ 1 + y + y 2 +  ' ' ' +yL-*]  

(3.17) 

where x =Kq and y =KqK.  When K = 1, (3.17) reduces again to the known one- 
dimensional result (2.20). From the formal expressions of P ( p )  near p c  ((3.11), (3.12), 
(3.13) and (2.6)) and S ( p )  ( p < p c )  (3.17), we find the critical exponents remain 
unchanged; p = 1 and y = 1. This too is expected from the universality concept. 

4. Bond percolation with interbranch bonds 

In the bond percolation, there are no formal expressions which can include all values 
of K and L. Here we will only consider the simplest case of K = 2 and L = 2 (figure 
6). The method described here can be easily generalised to treat higher values of K 
and L. 

Figure 6. Bond percolation. A Bethe lattice with interbranch bonds for the case K = 2 
and L = 2. 

For a Bethe lattice with Lth-nearest-neighbour bonds, unlike site percolation, 
there are (2L - 1) independent variables for each configuration of a chain of L sites. 
For K = 2 and L = 2, Qi ( i  = 1 ,2 ,3 )  are defined below (figure 7). Q1 is the probability 
that the branch emerging from the chain 1-2 belongs to a finite cluster when both 
sites 1 and 2 are connected to the origin. Similar definitions are used for Q2 and Q3. 
We write 4:"' as the probability that both sites 3 and 4 are connected to the origin 
when sites 1 and 2 are connected to the origin. Similar definitions are used for 4;") 
and 4:""'. For instance, 4:") is the probability that one of the sites 3 or 4 is connected 
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Figure 7. Illustrations of the definitions of Q1, Q 2  and Q 3  for K = 2 and L = 2. 0 denotes 
a site connected to the origin and 0 denotes a site disconnected to the origin. 

to the origin when both sites 1 and 2 are connected to the origin. The recursion 
relation for Q1 then becomes 

(4.1) (00) 2 
Qi =4i Q I  +24'io"'QiQ2+4:XX)Q:. 

If p and r are respectively the bond occupation probability for the nearest- and 
next-nearest-neighbour bonds, using the exclusion-inclusion principle, it is easy to 
obtain 

(4.2) 4:""' = q  2 2  s 4:"' =r(l-q2s2)+s(1-qs)z 4:"' =qs2(1 -4s) 

where q = 1 - p  and s = 1 - r. From (4.2), we find that 4 :O0) + 24 \Ox) + 4 p) = 1. This 
is because the sum of the probability for various configurations of sites 3 and 4 must 
add up to one. The recursion relations for Q2 and 0 3  are 

Qz = 4 ioo'Qa: + 24 i0"'Q3 + 4:""' 
(4.3) 

Q3 =c$:"'Qa: +2~:o"'Q1Q2+c$:XX)Q: 
where 

4;") = r (1  -s2)+sr2 
4:") = s  2 r 

4 y ' = s  2 

4:"' = r(1 -q2)+sp2 

4:") = spq (4.4) 

4:""' = q  2 . 
The probability normalisation condition 4 I") + 24 Io") + 4 IXx' = 1 again holds for i = 2 
and 3. Equations (4.1) and (4.3) possess a trivial solution Qi = 1 for all i. However, 
when the critical line f ( p , ,  r,) = 0 is reached from below, Qi starts to decrease from 
1. For some point ( p ,  r )  above but near the critical line, we write f ( p ,  r)  = E and 
Q i ( p ,  r )  = 1 -vi .  Expanding (4.1) and (4.3) to first order in E and vi and using the 
probability normalisation conditions, we find 

3 
Ti = aijtlj i = 1,2 ,3  

i = l  
(4.5) 

where 

a11 = 2[4:0°' +4;0x']  a12 = 2[4:O"' +4:""'] 
a23 =2[4ko0' +4$")] a31 = 2[4:0°' +4:'"'] (4.6) 
a32 = 2[4:"' ~ 1 3 = ~ 2 1  = ~ 2 2 = ~ 3 3 = 0 .  

From the condition det(ai, - Sij) = 0, we find the equation for the critical linef( p c ,  r,) = 0 
as 

(4.7) 
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Figure 8. A triangular cactus of degree three. 

When rc = 0 (s, = l), (4.6) reduces to q, = t ,  which is the result for the Bethe lattice 
( K  = 2) with nearest-neighbour bonds only. When p c  = 0 (4, = l), (4.7) gives the 
known critical percolation of a triangular cactus of degree three (figure 8) as 4s: (1 + 
r c ) = 3  (Essam 1972). Unlike the case of site percolation where only one physical 
root of q, exists in  (2.5) and (3.8), (4.7) possesses another solution at p ,  = 0; 2 s f ( l +  
r,) = 1. This solution gives a higher value of rc and does not represent a critical 
point. Since the critical point is determined by the appearance of the first non-trivial 
solution of (4.1) and (4.3) with Qi < 1 when p and/or r is increased from zero, only 
the solution with the lowest value of r, represents a critical point. Equation (4.7) is 
solved numerically and the critical line is shown in figure 9. 

percolat ing phase 

0 2  

P 

Figure 9. The critical line for bond percolation with K = 2 and L = 2 with interbranch 
bonds considered. 

where a is the probability that all three sites emerging from the origin are connected 
to it (figure 10(a)). Similar definitions are used for 6, c and e (figures 10(b), (c) and 
(e)). Using the exclusion-inclusion principle, it is easy to obtain 

a = ( r  3 2  +3r  s ) ( l - q 3 ) + 3 r s 2 p ( 1 - q 2 ) + s 3 p 3  

6 =[ r ( l  - q 2 ) + s p 2 ] q s 2  

c = p q  s 

e = q  . 
2 2  

3 

Again, the normalisation condition a + 36 + 3c + e  = 1 holds for (4.9). 

(4.9) 
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n b c e 

Figure 10. Various configurations for the probabilities a, b, c and e. 

To find the mean cluster size, we use the ‘ghost site’ method described in 3: 2. The 
calculation is straightforward and will not be given here. The result of S ( p ,  r )  for 
( p ,  r )  below the critical line is given by 

S ( p ,  r ) =  1 + 3 ( a  +26  +c)[ l - (Al /A)] -3(Az/A)(b+2c  + e )  (4.10) 

where a, 6, c and e are given by (4.9). A has the same expression as the left-hand 
side of (4.7) with all the subscripts ‘c’ omitted. AI and Az in (4.10) are given by 

= 2 - 2 q s z ( ~ - q s + q ) + 4 ( 1 - s Z - s 2 r ) [ 3 q s 2 ( 1 - q s + q ) - 2 ( s q p + q Z ) ]  
(4.11) 

A ~ = 2 ( 1 - ~ 2 - ~ 2 ~ ) [ l + 2 q ~ z ( 1 - q ~ + q ) - 2 ( ~ ~ q + q 2 ) ] .  

From (4.10), it is easy to see that S ( p ,  r )  diverges on the whole critical line with the 
same exponent y = 1 as the site percolation case. We would expect this site-bond 
universality to hold for all K > 1 and for any L. ( S ( p ,  r ) ) - ’  is plotted numerically in 
figure 11. 

The method described in this section can easily be generalised formally to the case 
of higher values of K and L. However, the calculations will be much more complicated 
and will not be pursued here. 

s’ 

P 

Figure 11. ( S ( p ,  r ) ) - ’  for bond percolation with K = 2 and L = 2, with interbranch bonds 
considered. 
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5. Summary 

The recursive method is generalised to treat percolation on a Bethe lattice with 
Lth-nearest-neighbour bonds. In the site percolation, both the cases without and with 
interbranch bonds are considered. Formal expressions for the critical percolation p, ,  
percolation probability P ( p )  (near p,) and the mean cluster size S ( p )  ( p  < p c )  are 
obtained for any K and L. For K > 1 and for any L, the critical behaviour of the 
models belongs to the same universality class. In the bond percolation, only the case 
of K = 2 and L = 2 is studied. Formal expressions for the critical line ( f ( p , ,  r,) = 0) 
and the mean cluster sizes S ( p ,  r)  (below the critical line) are obtained. The method 
described here can be generalised to treat other more complicated branching media 
including decorated Bethe lattices. 

Acknowledgment 

The authors are very grateful to the referee for many useful criticisms and suggestions. 
They would also like to thank P M Lam for a careful reading of the manuscript. 

Appendix 

In this appendix, we will give only a brief account of how (2.7) is derived. Expanding 
(2.2) to second order in A we find 

L-1 

j = O  
1 AiIC?: (0) = Ci i = 0, 1, * , . , L - 1 

where 

Ci = - [ ( K  - l)/K](Q1(0))*-2KQb(0)+2KQ1+i(O) 042) 
with 

QL(0) = 0. 

In (Al), Aij  is given by (2.4). The solvability condition for (Al)  is the existence of 
the solution Ri ( i  = 0, 1, . . . , L - 1) of the equation (Stakgold 1979) 

L-1 

j = O  
C AjiR, = 0 i =0,1, .  . . , L -  1 

with the condition that Ri must be orthogonal to Ci. That is 
L - 1  1 RiCi = 0. 
i = O  

In (A3), Aji  is the adjoint of A,. Using (2.4), (A3) has the form 

The solution of (A5) is 

Ri = (Kqc)'R0 i = 1,2,. . . , L -1 
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with 
L-1 

047) 

Substituting (A6), (A7) and (A2) into (A4), with some straightforward manipulation, 
we finally arrive at (2.7). 
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